FY 2015 LDRD Projects

See LDRD Projects by Fiscal Year

 FY 2023 FY 2022 FY 2021 FY 2020 FY 2019FY 2018 FY 2017 FY 2016 FY 2015

FY23 Important Dates

  • FY24 call for proposals
    Q2 2023
  • FY24 proposals due
    May 2, 2023
  • FY24 proposal presentations
    June 2023


Elise Poirier

Strategic Planning Lead

New LDRD Projects for FY15

Ultrafast Surface Chemical Transformation at the X-ray Laser LCLS

Lead Scientist: Frank Abild-Pedersen

Most conversion processes are performed via chemical reaction on a catalyst surface. The transition kinetics is greatly influenced by the dynamic motion of the molecules and the energy exchange process when the reaction is taking place. The present proposal aims at developing a methodology that can identify important signatures in energy transfer processes during a reaction, which in turn could provide ways to control chemical reactivity and selectivity. Ultrafast soft x‐ray spectroscopy at LCLS will probe evolving transient species on a metal surface to identify the energy exchange processes: phononmediated and/or electron‐mediated. Another goal is to develop theoretical methods to simulate the reaction dynamics of transient species using the Born‐Oppenheimer approximation with and without electronic friction. This research is well aligned with the DOE BES mission to understand, model, and control chemical reactivity and energy transfer processes in the gas phase, in solution, at interfaces, and on surfaces for energy‐related applications, employing lessons from inorganic and biological systems.


Real Time Control of Subsurface Fractures and Fluid Flow

Lead Scientists: Gordon Brown, John Barger

This strategic project seeks to develop X-ray nano- and micro- CT capabilities and experimental expertise, and to organize a collaborative SLAC/Stanford team that will better position SLAC to compete for research funding in a forthcoming DOE Subsurface Science Initiative. The aim is to elucidate fundamental processes controlling environmentally safe extraction of oil and natural gas from nanoporous rocks and processes for selectively seal rock fractures to prevent escape of CO2, methane, and high-level nuclear waste from geological reservoirs/repositories.


Compact High Power THz Source

Lead Scientist: Mike Fazio

This proposal seeks to perform the basic science and technology R&D that will lead to breakthrough RF source technology in the Terahertz (THz) spectrum leading to compact 1 kW average power and 100 kW peak power THz amplifier sources within 5 years that are many orders of magnitude beyond current capabilities.

modeling plasma


Modeling Acceleration in Laser Driven Shocks

Lead Scientist: Frederico Fiuza

This project studies the physics of collisionless shocks through first principles simulations and laboratory experiments in order to understand how the plasma conditions affect the shock structure, to identify optimal conditions for shock acceleration of particles, and to demonstrate the controlled generation of high energy ion beams. The accomplishment of this project will provide a fundamental understanding of the physics of shocks and cosmic ray acceleration in astrophysical plasmas and potentially bring a world-leading compact ion source to SLAC that sets a fast pace in development of application with high societal impact.


Structural Characterization of Electrolyte and Polymer Gated Electronics to Better Control Device Properties

Lead Scientist: David Goldhaber-Gordon

Electrical control of materials with strong electronic correlations or exotic electronic structure is key to making next-generation devices based on their rich physics. In the past several years, both electrolyte and polymer based gating have emerged as powerful and flexible techniques for achieving the largest carrier densities in these materials. Characterizing the structure of the interface between the channel and these unconventional gate dielectrics is critical to understanding the gating effects. This project seeks to elucidate the structure of the gating medium and channel in situ, which will guide improvements in device properties and function.


Monolithic Area Detector for Soft X-Rays and Charged Particles

Lead Scientist: Chris Kenney

Monolithic CMOS sensors have revolutionized the detection of visible light throughout society and have become one of the most ubiquitous items of consumer technology. Their adaptation to soft X-rays, energetic electrons, and high-energy charged particles will have a significant impact on most of SLAC’s experimental science programs in the SSRL, LCLS, Photon, and PPA directorates. Since the last LDRD cycle, this technology has become dramatically more relevant to SLAC’s future. The new LCLS II design switches the emphasis to lower energy X-rays, which is where CMOS sensors shine.


Ultrafast 11 eV Source for Time-Resolved Photoemission

Lead Scientist: Patrick Kirchmann

It is proposed to develop a novel VUV light source for time and angle resolved photoemission spectroscopy to study femtosecond electron dynamics in strongly correlated electron materials. This source will operate at 11 eV photon energy and thus grant access to the complete Fermi surface with high time and energy resolution, which can be adapted to specific material science questions.


New Initiative for Pioneering Research in Biology, Chemistry, and Material Science with State-of-the Art Soft X-ray Spectroscopy

Lead Scientist: Dennis Nordlund

Superconducting transition edge sensor (TES) technology presents a unique opportunity to build novel detectors with greatly increased sensitivity in the soft X-ray regime while maintaining excellent energy resolution. This project loosk to combine the development of a new generation TES spectrometer with a scientific investigation of the local electronic structure of ultra-low concentration sites in biology, chemistry, and materials, while simultaneously providing a powerful R and D test bed for new cryogenic detector technologies with demonstrated transformative prospects in X-ray science.


Development of Nano Ultrafast Electron Diffraction at SLAC

Lead Scientist: Alexander Reid

SLAC recently started an initiative to set up ultrafast electron diffraction and microscopy (UED) as a complementary tool to LCLS [Durr 2014]; this LDRD aims at developing UED for microscopy experiments (nanoscale ultrafast electron diffraction a.k.a. nano microscopy, accelerator technology and electron microscopy. The goal is to demonstrate nano UED by addressing a long standing controversy in ultrafast magnetism: How is angular momentum transferred to the lattice on the femtosecond timescale?


LUX/LZ Dark Matter Search

LZ Prototype Detector

Lead Scientists: Tom Shutt, Dan Akerib

The initiative seeks to establish KIPAC as a premier institute for the study of cosmic inflation. The funding will primarily be used to establish a large-scale CMB (cosmic microwave background) detector program at SLAC, targeting the primordial gravitational waves (tensor modes) generated during inflation. The science potential in universally recognized and well documented in many national and local prioritization committees. Timely implementation of this program will place the lab in a strong strategic potions to lead the development of the receiver camera(s) of the CMB-S4 polarization experiment (total cost $50M-$100M) jointly supported by DOE, NSF, and private funding. In addition, the initiative will foster dialogues between theorists, observers, and experimentalists to investigate novel probes of inflation.


Integrating Testing and Characterization with Theory for Catalytic Hydrogenation of CO2

Lead Scientist: Felix Studt

This project aims at developing new capabilities within SUNCAT and SLAC to integrate synthesis, testing, and characterization with theory, aiding in the development of next generation catalysts for energy transformations. In particular, in situ and operando characterization at SSRL will provide the capability to observe changes in our catalyst at various time and length scales and elucidate how these features guide catalyst performance. CO2 hydrogenation to methanol, catalyzed by novel Ni-Ga catalysts (developed by SUNCAT scientists), will serve as the focus for this study.


Hybrid Organic/Inorganic Perovskite Films Solar Absorbers: What is the Role of Defect?

Lead Scientist: Michael Toney

This joint NREL-SLAC proposal addresses the new hybrid organic-inorganic metal halide perovskites photovoltaics (PV). The goal of the proposal is to obtain a detailed, fundamental understanding of the relationship between film defects/structure and PV function, which will help drive the perovskite performance towards the thermodynamic limit and will position SLAC and NREL for future joint funding proposals in this exciting new area.


Lithiation of Model Battery Electrodes

Lead Scientist: Michael Toney

This project will conduct in-situ x-ray studies of model thin film electrode structures with th goal of obtaining fundamental isnight into phase formation proceses in energy storage electrodes (Li-ion batteries). These exciting, challending studies will furnish important structural information in tracking how the lithiated and delithiated phases form and propagate through LiMOh (M=Mn, CO, Ni) and mixed with metal oxide thin films- a largely under-explored research area. These model electrode stuides are an ideal platform to probe general electrode-electrolyte interactions between metal oxide electrodes and non-aqueoous electrolytes with are ubiquitous in Li-ion batteries.


Beyond the Current Limitations of Water Splitting Catalysts

Lead Scientist: Aleksandra Volvodic

The aim of this project is to systematically investigate new catalytic active sites for water splitting in bulk transition metal oxides, at their surfaces, and at interfaces between the oxide and support. Understanding of how to design 3D active sites in a controlled way to overcome the limitations imposed by the energy scaling relations is expected to development as a result. This project has the potential to provide an initial starting-point to bridge the gap between heterogeneous and homogenous catalysis.


Experimental Demonstrations of Gas Phase Ultrafast Electron Diffraction

Lead Scientist: Xijie Wang

This project will support the proof-of-principle experiments of the gas phase ultrafast chemical science enabled by ASTA UED. The MeV UED@ASTA offers unique opportunity for gas phase ultrafast chemical science experiments. The higher electron beam energy leads to better temporal resolution and elimination of the velocity mis-match between the pump laser and electron beam probe. Ultrafast electron diffraction in small molecules provides a new opportunity to exclusively distinguish the nuclear rearrangements upon photo-excitation. MeV electrons show negligible interaction with valence electrons. The relativistic electrons travel through the scattering medium with about the same speed as the optical excitation pulse, which improves the time resolution compared to keV electron scattering experiments.


Cross-Platform Multiple Length Scale Imaging System for Energy Storage Materials

Lead Scientist: Johanna Weker

This project proposes the initiation of a new enabling capability within SLAC, where we will develop and execute a cross-platform, multiple length scale imaging approach to study advanced energy storage systems. The goal is to develope the capability to sub-5 nm resolution in situ X-ray imaging and a cross-platform in situ methodology that will seamlessly link in-situ and ex-situ electron microscopy capabilities at Stanford University with current and future in-situ X-ray imaging capabilities at SSRL.


All Active Projects for FY15

Lead Investigator Title
Abild-Pedersen, Frank Ultrafast Surface Chemical Transformation at the X-ray Laser LCLS
Akerib, Dan LUX/LZ Dark Matter Search
Bostedt, Christopher Spatial and Time Resolved Pixel Detector - Tixel
Bargar, John Real-time Control of Subsurface Fractures and Fluid Flow
Carini, Gabriella cPix2: Multi-gate Detector for MHz Repetition Rate Pump-probe Experiments
Chueh, William Understanding Electrochemically-Active Oxide Surfaces Far From Equilibrium at Elevated Temperatures
Cohen, Aina Chemistry in Motion: New Approaches to Probe Enzymatic Reaction Mechanisms in Crystallo
Fazio, Mike Compact High Power Terahertz Source
Fiuza, Frederico Modeling Acceleration in Laser-Driven Shocks
Glenzer, Siegfried Center for Laboratory Astrophysics
Hikita, Yasayuki Interfacial Photo Electrochemistry Using Oxide Heterostructures
Kenney, Chris Monolithic Area Detector for Soft X-rays and Charged Particles
Kirchmann, Patrick Ultrafast 11 eV Source for Time-Resolved Photoemission
Kuo, Chao-Lin KIPAC Initiative on Cosmic Inflation
Lee, Wei-Sheng Exploring the Scientific Capability of Momentum-resolved Resonant Inelastic Soft X-ray Scattering for Material Science Research
Moore, Robert Low Dimensional Quantum Materials for Energy Applications
Nordlund, Dennis New Initiative for Pioneering Research in Biology, Chemistry, and Materials Science with State-of-the-Art Soft  X-ray Spectroscopy
Raghu, Srinivas Non-Fermi Liquid Metals
Reid, Alexander Development of Nano-Ultrafast Electron Diffraction at SLAC
Reis, David Prototype for Microjoule Class Femtosecond XUV Source
Studt, Felix CO2 To Mech Conversion
Toney, Michael Lithiation of Model Battery Electrodes
Toney, Michael Hybrid Organic/Inorganic Perovskite Films Solar Absorbers: What is the Role of Defect?
Vojvodic, Aleksandra Beyond the Current Limitations of Water Splitting Catalysts
Wakatsuki, Soichi Poly Ubiquitin Structural Biology
Wang, Xijie Experimental Demonstrations of Gas Phase Ultrafast Electron Diffraction
Weker, Johanna Cross-Platform Multiple Length Scale Imaging System for Energy Storage Materials

See LDRD Projects by Fiscal Year

 FY 2023 FY 2022 FY 2021 FY 2020 FY 2019FY 2018 FY 2017 FY 2016 FY 2015